Bounded arithmetic theory for the counting functions and Toda’s theorem
نویسنده
چکیده
In this paper we give a two sort bounded arithmetic whose provably total functions coincide with the class FP . Our first aim is to show that the theory proves Toda’s theorem in the sense that any formula in Σ∞ is provably equivalent to a Σ B 0 formula in the language of FP . We also argue about some problems concerning logical theories for counting classes.
منابع مشابه
Uniform proofs of ACC representations
We give a uniform proof of the theorems of Yao and Beigel-Tarui representing ACC predicates as constant depth circuits with MODm gates and a symmetric gate. The proof is based on a relativized, generalized form of Toda’s theorem expressed in terms of closure properties of formulas under bounded universal, existential and modular counting quantifiers. This allows the main proofs to be expressed ...
متن کاملA Complex Analogue of Toda’s Theorem
Toda [28] proved in 1989 that the (discrete) polynomial time hierarchy, PH, is contained in the class P#P, namely the class of languages that can be decided by a Turing machine in polynomial time given access to an oracle with the power to compute a function in the counting complexity class #P. This result, which illustrates the power of counting is considered to be a seminal result in computat...
متن کاملApproximate counting by hashing in bounded arithmetic
We show how to formalize approximate counting via hash functions in subsystems of bounded arithmetic, using variants of the weak pigeonhole principle. We discuss several applications, including a proof of the tournament principle, and an improvement on the known relationship of the collapse of the bounded arithmetic hierarchy to the collapse of the polynomial-time hierarchy.
متن کاملCompleteness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کاملA complex analogue of Toda's Theorem
Toda [19] proved in 1989 that the (discrete) polynomial time hierarchy, PH, is contained in the class P#P, namely the class of languages that can be decided by a Turing machine in polynomial time given access to an oracle with the power to compute a function in the counting complexity class #P. This result which illustrates the power of counting is considered to be a seminal result in computati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015